Calculate features based on the cell-based or full scan registration procedures
registrationFeatures.Rd
The feature_registration_all
function calculates the seven
registration-based features in one call. The feature_registration_summary
function is an exported helper.
Usage
feature_registration_all(comparisonData, id_cols = NULL)
feature_registration_summary(
cellIndex,
direction,
fft_ccf,
summaryVar,
summaryFun = mean,
imputeVal = NA
)
Arguments
- comparisonData
tibble such as one returned by the
comparison_cellBased()
orcomparison_fullScan()
functions that contains results from the cell-based or full scan comparison procedure- id_cols
variable(s) to group by prior to calculating the summary statistics
- cellIndex
tibble column containing cell indices
- direction
tibble column indicating whether the associated row came from the "reference_vs_target" or "target_vs_reference" comparison
- fft_ccf
tibble column containing cross-correlation function values
- summaryVar
tibble column that is to be summarized
- summaryFun
function that will be used to summarize the values in the
summaryVar
column- imputeVal
value to return if the feature calculation results in a non-numeric (i.e., NA, NULL) value
Note
The feature_registration_all
function can be used on comparison data
from a full-scan or cell-based comparison. For a full-scan comparison, we
recommend using only the average CCF and average pairwise-complete
correlation.
To calculate the visual diagnostic features, you must set the
returnX3Ps argument in the comparison_cellBased()
or
comparison_fullScan()
functions to TRUE.
Examples
data("K013sA1","K013sA2")
compData_cellBased <- comparison_cellBased(reference = K013sA1,
target = K013sA2,
thetas = c(-3,0,3))
#> Error in mutate(., direction = "reference_vs_target"): could not find function "mutate"
feature_registration_all(compData_cellBased)
#> Error in dplyr::summarise(., ccfMean = feature_registration_summary(cellIndex = cellIndex, direction = direction, fft_ccf = fft_ccf, summaryVar = fft_ccf, summaryFun = mean, imputeVal = NA), ccfSD = feature_registration_summary(cellIndex = cellIndex, direction = direction, fft_ccf = fft_ccf, summaryVar = fft_ccf, summaryFun = sd, imputeVal = NA), pairwiseCompCorAve = feature_registration_summary(cellIndex = cellIndex, direction = direction, fft_ccf = fft_ccf, summaryVar = pairwiseCompCor, summaryFun = mean, imputeVal = NA), pairwiseCompCorSD = feature_registration_summary(cellIndex = cellIndex, direction = direction, fft_ccf = fft_ccf, summaryVar = pairwiseCompCor, summaryFun = sd, imputeVal = NA), xTransSD = feature_registration_summary(cellIndex = cellIndex, direction = direction, fft_ccf = fft_ccf, summaryVar = x, summaryFun = sd, imputeVal = NA), yTransSD = feature_registration_summary(cellIndex = cellIndex, direction = direction, fft_ccf = fft_ccf, summaryVar = y, summaryFun = sd, imputeVal = NA), thetaRotSD = feature_registration_summary(cellIndex = cellIndex, direction = direction, fft_ccf = fft_ccf, summaryVar = theta, summaryFun = sd, imputeVal = NA)): object 'compData_cellBased' not found
compData_fullScan <- comparison_fullScan(reference = K013sA1,
target = K013sA2,
thetas = c(-3,0,3))
feature_registration_all(compData_fullScan) %>%
dplyr::select(ccfMean,pairwiseCompCorMean)
#> Error in dplyr::select(., ccfMean, pairwiseCompCorMean): Can't subset columns that don't exist.
#> ✖ Column `pairwiseCompCorMean` doesn't exist.